### Math 10 Chapter 2 - Part C

 1. If y = 2x and y = 2m then eliminant free from y is 2x = ma) Falseb) True
 2. If y = 2/t and y = 1/2s then relation free from y is 4s = ta) Trueb) False
 3. Eliminating 'm' from m2 + 1/m2 =x2 and m + 1/m = y we get x2 | y2 = 2a) Trueb) False
 4. Eliminating 'm' from m | z = 2 and m + y = 5 we get z + y = 3a) Falseb) True
 5. Eliminating 'x' from 1/x= 3m and x = 1/3n we get m = na) Trueb) False
 6. Eliminating t from y = 3t and yt = 1, we geta) 1/y = 3 b) y = 3c) y2 = 3d) y2 = 1
 7. Eliminating t from x+t =2p and y | t = 4qa) x+y = 2p + 4q b) x-y=2p-4qc) x+y = p +4qd) x-y=2p+4q
 8. The relation free from 'x' for equations x = 1/3n, x= m isa) 3n = m b) 3nm = 1c) 3m = nd) nm = 3
 9. Eliminating 'm' for equations m + x = 3c and m | y = 3d, we geta) x + y = 3c-3d b) x-y = 3c-3dc) x+ y = 3c + 3dd) x-y = 3c+3d
 10. Eliminating 'm' from m3 = 4t and m = n/4a) n = 256t3 b) n = 16tc) n3 = 16td) n3 = 256t
 11. Eliminating 'z' from x-z = 3 and y + z = 5a) x-y = 8 b) x + y= 2c) x � y = 2d) x + y = 8
 12. From equations ax2 + bx + c = 0 and lx2 + mx + n = 0 'x' can be eliminated by the method ofa) Cross Multiplication b) Application of Formulac) Substitutiond) Comparison
 13. If x + 1/x = a + b and x |1/x = a-b eliminant isa) a2+b2 = 4 b) a2 =b2c) ab = 1d) a2 | b2 = 4
 14. Eliminating x from x = a, 1/x = bwe geta) ab = -1 b) a/b = 1c) b/a = 1d) ab = 1
 15. The relation free of t from the equations a + t = 3 and b | t = 5a) a + b = 8 b) a + b = 2c) a | b = 8d) ab = 8
 16. If x = 2m and y = 8m then a relation free from 'm' isa) x + y = 4 b) x = yc) 4y = xd) 4x = y
 17. If z = 7 and z + x = 9 then a relation independent of z isa) x = 2 b) x = -16c) x =16d) x = -2
 18. If x + y = 2 and x2 + y2 = 4 then a relation free from x isa) 2y2 + y= 8 b) y2 | 2y = 0c) 2y2 | y = 0d) 8 + y2 |4y =0

This is more feedback!
This is the feedback!