## Math 10 Chapter 6 - Part E

 1. Congruent circlesa) Equal radii b) Equidistant from centrec) Common arcd) Congruent sides
 2. Congruent arcsa) Equidistant from centre b) Congruent sidesc) Equal central anglesd) Equal radii
 3. Congruent Chordsa) Equal radii b) Common arcc) Equidistant from centred) Congruent sides
 4. Congruent inscribed anglesa) Equal radii b) Equidistant from centrec) Common arcd) Equal central angles
 5. Similar figuresa) Equal central angles b) Common arcc) Congruent anglesd) Equal radii
 6. Minor arc is always less than thea) Inscribed circle b) Sector of circlec) Concentric circlesd) Semi-circle
 7. The circular region bounded by an arc of a circle and any two radial segment isa) Sector of circle b) Circum-circlec) Semi-circled) Concentric circles
 8. Circles having common centre are calleda) Inscribed circle b) Sector of circlec) Circum-circled) Concentric circles
 9. The circle which passes through the three vertices of a triangle is calleda) Concentric circles b) Semi-circlec) Circum-circled) Escribed circle
 10. �r� represent the radius ofa) Concentric circles b) Escribed circlec) Circum-circled) Inscribed circle
 11. The perpendicular bisector of a chord of a circle passes througha) Chord of circle b) Equalc) Three non-collinear pointsd) Centre of the circle
 12. One and only one circle can pass througha) Obtuse b) Centre of the circlec) Three non-collinear pointsd) Acute
 13. Angle inscribed in a major arc isa) Chord of circle b) Acutec) Obtused) Equal
 14. All angles inscribed in a major arc area) Chord of circle b) Three non-collinear pointsc) Obtused) Equal
 15. Every diameter of a circle is alsa) Chord of circle b) Chord of circlec) Three non-collinear pointsd) Centre of the circle
 16. Central angle is an angle subtended by an arc at thea) Tangent to the circle b) Two right anglesc) Internallyd) Centre of the circle
 17. The measure of an angle inscribed in a semi-circle isa) Internally b) Two right anglesc) Right angled) Tangent to the circle
 18. If the distance between the centres of two circles is equal to the difference of their radii, then they toucha) Tangent to the circle b) Right anglec) Internallyd) Centre of the circle
 19. A line which is perpendicular to a radial segment at its outer end isa) Two right angles b) Centre of the circlec) Tangent to the circled) Right angle
 20. Sum of opposite angles in a cyclic quadrilateral isa) Externally b) Acute anglec) Two right anglesd) Centre of the circle

This is more feedback!
This is the feedback!